一种改进的小波去噪方法及其在相位 提取中的应用

崔世林1,2 田 斐1 李德华2

/ 「南阳理工学院电子与电气工程学院,河南南阳 473004

(2 华中科技大学图像识别与人工智能研究所, 湖北 武汉 430074)

摘要为了准确地提取出结构光测量中变形条纹的瞬时相位,需对变形条纹图像进行滤波。在OWT_SURE_LET 小波去噪的基础上,用冗余小波代替正交小波,用 DB8 小波代替 Sym8 小波,利用一个六变量的收缩函数代替四变 量的收缩函数,提出了一种改进的 SWT_SURE_LET 小波滤波算法,该算法速度快、稳健性强。峰值信噪比和相位 均方根值提取精度两个指标表明,无论何种类型的变形条纹,无论变形条纹的载频怎么变化,改进算法都是有效 的。和其他经典的及最新的去噪算法相比,改进后的算法具有最好的结果和稳健性。

关键词 信号处理;小波去噪;贝叶斯估计;相位提取;三维测量

中图分类号 O438 文献标识码 A doi: 10.3788/CJL201340.s108001

An Improvement Wavelet Denoising Method and Its Application in Phase Retrieval

Cui Shilin^{1,2} Tian Fei¹ Li Dehua²

 ¹ School of Electronic and Electrical Engineering, Nanyang Institute of Technology, Nanyang, Henan 473004, China
 ² Institute for Pattern Recognition and Artificial Intelligence, Huazhong University of Science and

Technology, Wuhan, Hubei 430074, China

Abstract To retrieval the instantaneous phase of the fringe pattern accurately in Fringe Projection Profilometry, the fringe pattern should be denoised. Based on OWT_SURE_LET wavelet denoising method, using stationary wavelet substitute for orthogonal wavelet, using DB8 substitute for Sym8, and using a shrinkage function with six parameters substitute for that with four parameters, an improved wavelet de-noising algorithm is proposed. Compared with other de-noising methods, the new method is very fast and robust. Experiments show that this new method is effective in the sense of peak signal-to-noise ratio (PSNR) and root square mean error (RSME) of the instantaneous phase of fringe pattern, no matter what types of the fringe pattern or the carrier frequency in the fringe pattern.

Key words signal processing; wavelet de-noising; Bayes estimation; phase retrieval; three-dimensional measurement OCIS codes 120.2650; 120.2830; 120.5050

1引 言

自 Donoho 等^[1-2]提出小波滤波的软阈值方法以 来,小波滤波便得到广泛的关注并取得了巨大的成 功。较早的小波去噪算法采用模极大值去噪,这项技 术的典型代表是 Xu 等^[3]提出来的空域滤波算法。

近年来,人们对小波去噪技术进行了更加深入的研究,主要的研究方向和研究成果集中于以下两

个方面:

1)采用冗余小波变换代替正交小波变换。一般认为,系数的稀疏性和平移不变性是冗余小波去 噪优于正交小波变换的主要原因,这种小波去噪技 术的典型代表有非抽样小波变换^[4]、Steerable 小波 变换^[5]、Ridgelets 小波变换^[6]、Contourlets 小波变 换^[7]、Curvelets 小波变换^[8]、有理小波变换、复小波

作者简介:崔世林(1977—),男,博士,副教授,主要从事人工智能、图像处理和信号处理等方面的研究。

收稿日期: 2013-05-21; 收到修改稿日期: 2013-06-20

E-mail: shilin.cui@gmail.com

变换[9]等;

2) 用小波系数的统计相关性假定代替小波系 数的独立性假定。小波夫噪的第二个研究方向放松 了对小波系数独立性假定的要求,认为小波系数在 其邻域内是统计相关的[10-11]。这个方向的主要成 果有 Crouse 等^[12]提出的小波系数分布的隐马尔科 夫模型, Simoncelli^[13]提出的贝叶斯模型, Chang 等[14]提出的上下文模型,以及 Shan 等[15]提出的共 生矩阵模型等。Portilla 等^[16]认为小波系数在其领 域内服从高斯混合尺度分布,从而提出了著名的 BLS-GSM 算法。该算法将尺度内和尺度间邻域内 的小波系数分布建模为高斯尺度混合分布,并采用 贝叶斯最小均方估计来计算小波系数的真值,这种 方法非常有效,是目前为止对自然图像去噪效果最 好的一种算法。Rabbani 等^[17]提出 LapMixShrink 法,该方法将小波系数建模为一个带局部参数的混 合拉普拉斯概率密度函数,并且,该模型在基于可调 金字塔分解的图像去噪中也取得了很好的效果^[18]。 Pižurica 等^[19] 假定无噪数据服从广义 Laplacian 分 布,提出了一种 Prob-Shrink 阈值收缩算法, Sendur 等根据小波系数邻域之间的依赖性,分别将尺度 间^[20]、尺度间与尺度内^[21]小波系数建模为非高斯双 变量模型,并提出了一个非线性双变量收缩函数,对 小波系数进行非线性收缩,其中收缩函数的参数可 以通过最大后验估计得到, Zhang 等^[22]利用分数样 条小波对该方法进行了改进。Yin 等^[23]将小波系 数建模为一个各向异性的双变量 Laplacian 分布函 数,这个模型可以很好地表示小波系数的方向性,同 时,采用双变量也考虑了小波系数的父子依赖性。

事实上,图像或信号的类型多种多样,要求其小 波系数或噪声类型服从某种先验分布是一个非常苛 刻的条件,因此,假设小波系数服从某种先验分布是 有局限性的,这也正是非贝叶斯学派攻击贝叶斯学 派的有力证据。

为了避开对这一问题的争议,文献[24-25]提 出一种新的小波去噪方法,采用最小二乘学习的方 法,从大量的样本图像中学习,从而得到小波收缩函 数的参数。该方法无需知道图像或噪声的先验分 布,就能够得到很好的去噪效果,其缺点是需要准备 大量的样本对小波系数收缩函数进行训练。文献 [26-27]对经典的无偏风险估计子(SURE)阈值法 进行了改进,提出了一种新的自适应阈值去噪算法, 简记为 OWT_SURE_LET,该算法也无需知道图形 或信号的小波系数的先验分布及其类型,同时该算 法采用正交小波变换,计算量小、执行速度快。但是 Muramatsu^[28]指出该方法在尺度间小波系数相关 性不大时,去噪效果会下降,同时,基于多方向不可 分离层叠正交变换方法,提出了一种新的 SURE_ LET 方法,叫做 DirLOTs_SURE_Let 小波去噪。

本文对 OWT_SURE_LET 小波去噪算法进行 了深入的研究,并在此基础上,提出了基于抽样小波 变换的新 SURE 小波去噪方法,简记为 SWT_ SURE_LET,和 DirLOTs_SURE_Let 以及几种经 典的去噪方法的对比实验结果表明,新提出的算法 执行速度快,同时,无论在何种噪声水平下,无论变 形条纹的类型怎样变化,该算法的去噪效果也好于 原始的 OWT_SURE_LET 算法和 DirLOTs_SURE _Let 算法。

2 改进的 SWT_SURE_LET 小波滤 波算法

令 y_n 表示小波系数矢量 **Y** 中的某个元素, x_n 表示 **X** 的某个元素, b_n 表示 **B** 中的某个元素, b_n 是一个随机变量, $x_n = \theta(y_n)$, 为 x_n 的估计值。将

 $\bar{\epsilon} = [\theta(y)]^2 - 2y\theta(y) + 2\sigma^2\theta'(y) \qquad (1)$ 最小化,即可得到小波系数的最优估计^[26],式中 σ 表示信号 y 的方差, $\theta(y)$ 表示 y 的函数。其中,

$$\theta(y, y_{p}) = f(y_{p})[a_{1}\varphi_{1}(y) + a_{2}\varphi_{2}(y)] + [1 - f(y_{p})][b_{1}\varphi_{1}(y) + b_{2}\varphi_{2}(y)], \quad (2)$$

 $f(y_{p}) = \exp\left(-\frac{y_{p}}{2T^{2}}\right), y_{p}$ 表示和 y 相对应的父小波 系数, $T = \sqrt{6\sigma}$ 。

为了进一步提高小波去噪的效果,采用非抽样 小波代替正交小波变换,采用 DB8 小波代替 Sym8 小波,提出了一种新的小波去噪算法,改进后的算法 简称为 SWT_SURE_LET,具体步骤描述如下:

 1) 对变形条纹图像进行二维非抽样小波变换, 其分解层次可根据经验设为4或5。一般情况下, 分解层次的微小变动对小波去噪结果没有明显的影响,这里使用 DB8 小波代替原算法中的 Sym8 小 波。

2)考虑小波系数的尺度内和尺度间的关系,定
 义新的估计函数为

$$\theta(y, y_{p}) = f(y_{p}) [a_{1}\varphi_{1}(y) + a_{2}\varphi_{2}(y) + a_{3}\varphi_{3}(y)] + [1 - f(y_{p})] [b_{1}\varphi_{1}(y) + b_{2}\varphi_{2}(y) + b_{3}\varphi_{3}(y)],$$
(3)

式中 $\varphi_3(y) = y \exp\left[-\frac{T^2}{2(y^2+1)}\right]$ 。改进算法的小

波系数估计函数增加了一项 $\varphi_{3}(y)$,这是因为当小 波系数 y 比较大时, 由 $\varphi_2(y)$ 引起的小波系数收缩 程度较小,导致噪声滤除不干净,在同样情况下, $\sigma_3(y)$ 的引入可以增加大系数的收缩程度,从而使 得去噪效果更好。

3) 重复步骤 2), 直到当前层没有父层为止。

4) 利用小波系数的估计值, 重构变形条纹 图像。

> (a) 50

100

150

200

300

350

400

450

500

50

150

250

x/pixel

350

450

y /pixel 250

实验结果与分析 3

模拟光栅Ⅰ的表达式为

$$I(x,y) = 0.25\phi(x,y) +$$

$$\cos\left[2\pi f_0 x + \phi(x, y)\right] + r(x, y), (4)$$

$$\phi(x,y) = 3(1-x)^{2} \exp\left[-x^{2} - (y+1)^{2}\right] - 10\left(\frac{x}{5} - x^{3} - y^{5}\right) \exp\left(-x^{2} - y^{2}\right) - \frac{1}{3} \exp\left[-(x+1)^{2} - y^{2}\right].$$
(5)

模拟光栅Ⅱ的表达式为

$$I(x, y) = 0.25\phi(x, y) + \cos[2\pi f_0 x + \phi(x, y)] + r(x, y).$$
(6)

式中

$$\phi(x,y) = 0.2 \sqrt{(x-256)^2 + (y-256)^2}.$$
 (7)

采用 SWT_SURE_LET 方法对添加了大噪声 的模拟条纹进行去噪,其去噪前后对比如图1所示。

图 1 SWT_SURE_LET 方法的变形条纹去噪。(a) 去噪前;(b) 去噪后

Fig. 1 Results of SWT_SURE_LET de-noising. (a) No de-noising; (b) de-noised

为了进一步从数量上验证算法的去噪效果和稳 健性,在模拟光栅条纹上添加服从均匀分布的随机 噪声 r,其幅度大小分别为 0.2,0.5,0.8,1,1.2,1.5 和 2, SWT_SURE_LET 去噪结果峰值信噪比 (PSNR)如表1~4 所示。在所有参与比较的算法

中,BM3D^[29]和 BLS_GSM^[16]是最经典的去噪算法, 在自然图像去噪中,至今没有算法能够取得比这两 种算法更好的性能,DirLOTs_SURE_Let 算法是最 新的基于 OWT_SURE_LET 改进的一种多方向小 波夫噪算法。

表1 载频为1/8的模拟条纹图像 I 各种方法的去噪结果 PSNR 对比

Fable 1	PSNR	results for	simulated	pattern	Ι	with	carrier	frequency	of	1/	8
---------	------	-------------	-----------	---------	---	------	---------	-----------	----	----	---

Noise	0.2	0.5	0.8	1.0	1.2	1.5	2
DirLOTs_SURE_Let	18.5507	18.1176	17.3855	16.7900	16.1426	15.1197	13.4448
OWT_SURE_LET	24.3849	16.4044	12.3085	10.3647	8.7775	6.8360	4.3337
BM3D	-40.557	-40.820	-40.889	-40.862	-40.763	-40.512	-40.056
BLS_GSM	30.6683	25.4765	22.4861	20.9630	19.6943	18.1816	15.8450
SWT_SURE_LET	35.5720	28.6358	24.6505	22.7550	21.3155	19.7734	17.8833

表 2 载频为 1/16 的模拟条纹图像 1 各种方法的去噪结果 PSNF	く対と	Ľ
---------------------------------------	-----	---

Table 2 PSNR results for simulated pattern I with carrier frequency of 1/16

Noise	0.2	0.5	0.8	1.0	1.2	1.5	2
DirLOTs_SURE_Let	25.2392	23.6106	21.4859	20.2691	19.2519	18.0261	16.4917
OWT_SURE_LET	24.5712	16.4697	12.3394	10.3872	8.7951	6.8482	4.3369
BM3D	-40.551	-40.824	-40.906	-40.873	-40.766	-40.523	-40.064
BLS_GSM	36.3596	30.7031	27.2218	25.3991	23.8891	22.1291	19.9656
SWT_SURE_LET	37.9081	32.2359	28.6985	26.8922	25.3821	23.5131	21.1053

Table 3 PSNR results for simulated pattern II with carrier frequency of 1/8 Noise 0.2 0.5 0.8 1.0 1.2 1.5 2 DirLOTs_SURE_Let 17.6348 16.7962 16.1531 15.4814 18.1841 14.4720 12.8942 OWT_SURE_LET 25.5752 16.9823 12.7547 10.7741 9.1618 7.1894 4.6389 BM3D 14.6022 20.5113 21.8324 21.6957 21.2179 20.2890 18.6854 BLS_GSM 30.6683 25.4765 22.4861 20.9630 19.6943 18.1816 15.8450 24.2667 SWT_SURE_LET 27.8388 20.9503 19.1162 16.7877 32.8892 22.4494

表 3 载频为 1/8 的模拟条纹图像 Ⅱ 各种方法的去噪结果 PSNR 对比

表 4 载频为 1/16 的模拟条纹图像 Ⅱ 各种方法的去噪结果 PSNR 对比

Table 4 PSNR results for simulated pattern II with carrier frequency of 1/16

Noise	0.2	0.5	0.8	1.0	1.2	1.5	2
DirLOTs_SURE_Let	26.1572	23.0554	20.8250	19.5946	18.5470	17.2446	15.5799
OWT_SURE_LET	24.5853	16.5150	12.3698	10.3947	8.7800	6.8071	4.2722
BM3D	14.3890	20.6505	22.2967	22.3090	21.9450	21.0937	19.5473
BLS_GSM	31.9541	26.8495	23.6977	22.1907	20.9601	19.4391	17.5063
SWT_SURE_LET	36.4316	29.5193	26.2604	24.8456	23.7294	22.3624	20.5037

从上述结果可以看出,新方法的去噪效果是最 好的,除了 BM3D 方法的效果在少数测试案例中好 于新方法外,新方法所得到的 PSNR 均远好于其他 方法,包括经典的 BLS_GSM 方法。从表 1~4 还可 以看出,BM3D 方法的稳健性是最差的,在相当一部 分测试案例中,BM3D 方法给出的结果都是最差的, 在少数测试案例中,BM3D 方法给出的结果又是最好的, 这主要是因为 BM3D 方法在噪声建模时采用的是 高斯噪声,而实验注入的是随机噪声。本文的方法 在理论推导和程序编码时,所假定的噪声类型也是 比 SWT_SURE_LET 方法和 BM3D 方法,很容易 看出 BM3D 方法对噪声类型缺乏稳健性。

单纯利用 PSNR 评价去噪结果也是不全面的, 由于采用的图像是模拟的条纹图像,其标准瞬时相 位是已知的,为了验证 SWT_SURE_LET 算法对提 取相位的精度是否有帮助,采用几种去噪算法,对变 形条纹图像进行预处理,然后对去噪后的变形条纹 进行相位提取,整个实验结果如表 5~8 所示,其中 相位提取算法统一采用的是 DWT_ECOST^[30] 方法。

表 5 各种不同去噪算法下,载频为 1/8 的模拟条纹 I 的相位提取结果对比 Table 5 Phase retrieval results for simulated pattern I with carrier frequency of 1/8

_					
	Noise	SWT_SURE_LET	BSL_GSM	BM3D	DirLOTs_SURE_Let
	0.2	0.0189	0.0184	3.6081	0.1016
	0.5	0.0375	0.0349	3.7483	0.1070
	0.9	0.0652	0.0530	1.5682	0.1162
	1.2	0.0855	0.0678	1.5737	0.1248
	1.5	0.1032	0.0849	222.8725	0.1336
	1.8	0.1197	0.1101	235.9534	0.1516
	2.0	0.1307	0.1214	270.4449	0.1820

表 6 各种不同去噪算法下,载频为 1/16 的模拟条纹 I 的相位提取结果对比

Table 6	Phase retrieval	results for	simulated	pattern	I with	carrier	frequency	of	1/	16
r ubre o	I made retrievar	results for	omnuneccu	puttern .	L ** 1011	currer	nequency	01	+/	10

Noise	SWT_SURE_LET	BSL_GSM	BM3D	DirLOTs_SURE_Let
0.2	0.0380	0.0180	9.0521	0.0546
0.5	0.0440	0.0301	1.3497	0.0640
0.9	0.0423	0.0482	1.1439	0.0802
1.2	0.0546	0.0626	259.2635	0.0912
1.5	0.0669	0.0759	284.2204	0.1013
1.8	0.0785	0.0884	299.4918	0.1143
2.0	0.0863	0.0954	251.3334	0.1315

表 7 各种不同去噪算法下,对载频为 1/8 的模拟条纹Ⅱ的相位提取结果对比

Noise	SWT_SURE_LET	BSL_GSM	BM3D	DirLOTs_SURE_Let
0.2	0.0461	0.0465	0.1895	0.1150
0.5	0.0568	0.0570	0.1013	0.1208
0.9	0.0785	0.0835	0.0909	0.1310
1.2	0.0975	0.1030	0.0976	0.1410
1.5	0.1175	0.1201	0.1080	0.1504
1.8	0.1380	0.1401	0.1203	0.1671
2.0	0.1519	0.1532	0.1290	0.2007

Table 7 Phase retrieval results for simulated pattern II with carrier frequency of 1/8

表 8 各种不同去噪算法下,载频为 1/16 的模拟条纹Ⅱ的相位提取结果对比 Table 8 Phase retrieval results for simulated pattern II with carrier frequency of 1/16

Noise	SWT_SURE_LET	BSL_GSM	BM3D	DirLOTs_SURE_Let
0.2	0.0613	0.0628	58.5944	0.0754
0.5	0.0687	0.0731	0.1086	0.0888
0.9	0.0809	0.0914	0.0956	0.1043
1.2	0.0897	0.1055	0.0993	0.1155
1.5	0.0982	0.1173	0.1066	0.1267
1.8	0.1071	0.1313	0.1156	0.1429
2.0	0.1133	0.1397	0.1224	0.1676

从平均精度提升和整体上看,几种算法的平均 均方根误差(RSME)如表 9 所示,从中可以看出,新

算法所带来的效果是非常明显的。

表 9 各种算法的误差对比

Table 9 RSME comparison of different de-noising methods

	Method	SWT_SURE_LET	BLS_GS	М	BM3D	DirLOTs_SURE_Let
	Average RMSE	0.081314	0.08334	3	68.06082	0.121468
	和 BLS_GSM 算法	相比,SWT_SURE_L	ET 算 S	SURE_LET	`算法的效果和	肖好于 GLS_GSM 算法。
法者	主载频为 1/16 的模打	以条纹Ⅰ,载频为1/8利	和1/16	在相同	的条件下(1.6	5 GHz的 CPU,1G 内存,
的棒	莫拟条纹Ⅱ上,均稍如	F于 BLS_GSM 算法, f	又在载 、	Win7 操作系	系统,Matlab7.	10),各种算法那所消耗
频う	b 1/8 的模拟条纹Ⅰ	上,SWT_SURE_LET	Γ算法 Ι	的时间对比	如表 10 所示。	
略们	氐于 BLS_GSM 算	法,这说明整体上,	SWT			

表 10 各种算法消耗时间对	EĽ
----------------	----

Table 10 Time consuming comparison of different de-noising methods

Method	SWT_SURE_LET	BLS_GSM	BM3D	DirLOTs_SURE_Let
Time consuming /s	3.25	40.5	4.7	28

从上述相位提取精度对比和消耗时间对比结果 来看,SWT_SURE_LET 算法无论是去噪效果还是 运行时间,均好于经典的 BLS_GSM 算法和最新的 DirLOTs SURE Let 算法。

结 4 论

在 OWT_SURE_LET 小波去噪算法的研究基础 上,提出了一种新的小波滤波算法,该算法采用 DB8 小波对信号进行平稳小波分解,得到一个冗余的小波 变换结果,然后利用一个新的线性扩展变换模型对小 波的父子系数进行建模,用 Stein 无偏估计得到模型 的最佳参数。PSNR 和相位提取的精度这两个性能 指标共同表明该去噪算法是有效的。同时,新的去噪 算法无需知道小波系数的先验分布,因此,根据估值 理论,算法在理论上具有较强的稳健性。

去噪问题本质上是数值估计理论和方法的应 用,根据估值理论,如果对模型的先验知识掌握的比 较多,那么利用贝叶斯估计可以得到较高的估计精 度。三维测量中,变形条纹图像由三部分构成,只要 找到由这三部分构成的变形条纹图像的小波系数的 先验模型,就能利用贝叶斯估计得到较好的去噪效 果。因此,下一步将重点研究变形条纹图像的小波 系数的先验模型,从而进一步提高变形条纹小波去 噪的精度。

参考文献

- 1 D L Donoho. De-noising by soft-thresholding [J]. IEEE Trans Information Theory, 1995, 41(3): 613-627.
- 2 D L Donoho, I M Johnstone. Adapting to unknown smoothness via wavelet shrinkage [J]. Journal of the American Statistical Association, 1995, 90(432): 1200-1224.
- 3 Yansun Xu, J B Weaver, D M Healy Jr, *et al.*. Wavelet transform domain filters: a spatially selective noise filtration technique[J]. IEEE Trans Image Processing, 1994, 3(6): 747-758.
- 4 R R Coifman, D L Donoho. Translation Invariant De-noising [M]. New York: Springer, 1995. 125-150.
- 5 E P Simoncelli, E H Adelson. Noise removal via Bayesian wavelet coring[C]. Image Processing, 1996 Proceedings, IEEE International Conference on, 1996, 1: 379-382.
- 6 P Carré, D Helbert. Ridgelet decomposition: discrete implementation and color denoising [C]. SPIE, 2005, 6001: 60010F-1.
- 7 B Matalon, M Elad, M Zibulevsky. Image denoising with the contourlet transform[C]. Proceedings of SPARSE'05, 2005.
- 8 J L Starck, E J Candes, D L Donoho. The curvelet transform for image denoising [J]. IEEE Trans Image Processing, 2002, 11 (6): 670-684.
- 9 N G Kingsbury. Complex wavelets for shift invariant analysis and filtering of signals[J]. J Appl Comput Harmon Anal, 2001, 10 (3): 234-253.
- 10 S Mallat, Z Zhang. Matching pursuits with time-frequency dictionaries[J]. IEEE Trans Signal Processing, 1993, 41(12): 3397-3415.
- 11 S S Chen, D L Donoho. Atomic decomposition by basis pursuit [J]. SIAM Journal on Scientific Computing, 1999, 20(1): 33-61.
- 12 M Crouse, R Nowa, R Baraniuk. Wavelet-based statistical signal processing using hidden Markov models[J]. IEEE Trans Signal Processing, 1998, 46(1): 886-902.
- 13 E P Simoncelli. Modeling the joint statistics of images in the wavelet domain[C]. SPIE, 1999, 3813, 188-195.
- 14 S Chang, B Yu, M Vetterli. Spatially adaptive wavelet thresholding with context modeling for image denoising[J]. IEEE Trans Image Processing, 2000, 9(9): 1522-1531.
- 15 Z Shan, S Aviyente. Image denoising based on the wavelet cooccurrence matrix [C]. Proc IEEE ICASSP 2005, 2005: 645-648.
- 16 J Portilla, V Strela, M J Wainwright, et al.. Image denoising

using scale mixtures of Gaussians in the wavelet domain [J]. IEEE Trans Image Processing, 2003, 12(11): 1338-1351.

- 17 H Rabbani, M Vafadust. Image video denoising based on a mixture of Laplace distributions with local parameters in multidimensional complex wavelet domain[J]. Signal Processing, 2008, 88(1), 158-173.
- 18 H Rabbani. Image denoising in steerable pyramid domain based on a local Laplace prior[J]. Pattern Recognition, 2009, 42(9): 2181-2193.
- 19 A Pizurica, W Philips. Estimating the probability of the presence of a signal of interest in multiresolution single- and multiband image denoising [J]. IEEE Trans Image Processing, 2006, 15 (3): 654-665.
- 20 L Sendur, I W Selesnick. Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency [J]. IEEE Trans Signal Processing, 2002, 50(11), 2744-2756.
- 21 L Sendur, I W Selesnick. Bivariate shrinkage with local variance estimation [J]. IEEE Signal Process Lett, 2002, 9 (12): 438-441.
- 22 Zhang Daqi, Qu Shiru, Li Weibin, et al.. Image denoising using fractional B-spline wavelet thresholding[J]. Acta Optica Sinica, 2009, 29(4): 907-913.
 张大奇,曲仕茹,李卫斌,等. 对称分数样条小波域图像去噪研究[J]. 光学学报, 2009, 29(4): 907-913.
- 23 Yin Songfeng, Cao Liangcai, Ling Yongshun, et al.. Image denoising with anisotropic bivariate shrinkage [J]. Signal Processing, 2011, 91(1): 2078-2090.
- 24 Y Hel-Or, D Shaked. A discriminative approach for wavelet denoising [J]. IEEE Trans Image Processing, 2008, 17(4): 443-457.
- 25 A Adler, Y Hel-Or, M Elad. A weighted discriminative approach for image denoising with overcomplete representations [C]. Proc IEEE ICASSP, 2010; 782-785.
- 26 F Luisier, T Blu, M Unser. A new SURE approach to image denoising; interscale orthonormal wavelet thresholding[J]. IEEE Trans Image Processing, 2007, 16(3); 593-606.
- 27 T Blu, F Luisier. The SURE-LET approach to image denoising [J]. IEEE Trans Image Processing, 2007, 16(11): 2778-2786.
- 28 S Muramatsu. SURE-LET image denoising with multiple directional LOTs[C]. PCS, 2012 IEEE, 2012. 229-232.
- 29 K Dabov, A Foi, V Katkovnik, *et al.*. Image denoising by sparse 3-D transform-domain collaborative filtering [J]. IEEE Trans Image Processing, 2007, 16(8): 2080-2095.
- 30 Cui Shilin, Tian Fei, Li Dehua. Method to eliminate the zero spectra in Fourier transform profilometry based on a cost function [J]. Appl Opt, 2012, 51(16): 3194-3204.

栏目编辑:何卓铭